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Self-duality of the asymptotic relaxation states of fluids and plasmas
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The states of asymptotic relaxation of two-dimensional fluids and plasmas present a high degree of regularity
and obedience to the sinh-Poisson equation. We find that by embedding the classical fluid description into a
field-theoretical framework, the same equation appears as a manifestation of the self-duality.
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The states generated by externally driving~stirring! an
ideal fluid can have a very irregular form. It is, howeve
known from experiments and numerical simulations that
ter suppressing the drive the system evolves to states w
high degree of order, essentially consisting of few large v
tices, with very regular geometry. These states are atta
after long time evolution and are not due to the resid
dissipation. The process consists of vortex merging, whic
an essentially topological event where the weak dissipa
only allows the reconnection of the field lines but does
produce significant energy loss from the fluid motion. Inf
ring from results of numerical simulations, Montgome
et al. @1,2# have proved that the scalar stream functionc
describing the motion in two-dimensional space obeys in
far asymptotic regime~where the regular structures are dom
nant! the sinh-Poisson equation

Dc1g sinh~bc!50, ~1!

whereg andb arepositiveconstants. The relations ofc to
the velocity and vorticity arev5“c3êz , v5“3v5

2¹2cêz , whereêz is the unitary vector perpendicular to th
plane. With these variables, the Euler equations for the t
dimensional ideal incompressible fluids are

“•v50,
]v

]t
1~v•“ !v50. ~2!

The fact that the sinh-Poisson equation appears in
context is rather unexpected. It is difficult to understand h
this equation~exactly integrable and with a very wide in
volvement in topological soliton and instanton physics! can
also describe fluid states. Our objective is to prove that th
is a natural way to enlarge the classical Euler fluid desc
tion to a field-theoretical framework where the topologic
properties become more transparent. The most importan
sult is that the asymptotic relaxation states and
sinh-Poisson equation naturally emerge as a consequen
self-duality. The extension of the Euler fluid description w
be done progressively, examining models elaborated
closely related problems and collecting the relevant sugg
tions that could allow us to write a Lagrangian density.
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In the study of the two-dimensional Euler fluids, and
particular in explaining the origin of Eq.~1!, an important
model consists of a system ofN discrete vorticity filaments
perpendicular on plane, having circular transversal sectio
radiusa and carrying the vorticityv i , i 51,N. A very com-
prehensive account of this system is given by Kraichnan
Montgomery@3# where the correspondence between the c
tinuous and discrete representations of vorticity is discus
in detail. The motion in plane of thekth filament of coordi-
natesr k[(r k

1 ,r k
2)[(xk ,yk) is given by

drk
i

dt
5« i j

]

]r k
j (

n51,nÞk

N

vnG~r k2rn!, i , j 51,2, k51,N,

~3!

where the summation is over all the other filaments’ po
tions rn , nÞk, and « i j is the antisymmetric tensor in two
dimensions. As shown in Ref.@3# G(r k2rn) can be approxi-
mated fora small compared to the space extension of
fluid, L, a!L, as the Green function of the Laplacian

G~r ,r 8!'2
1

2p
lnS ur2r 8u

L D . ~4!

Using the Liouville theorem and the conservation of e
ergy and momentum the statistical properties of the sys
of discrete vortices have been examined. The model con
of an equal number of positive and negative vortices w
equal absolute magnitudesuv i u5uvu, in contact with a ther-
mal bath of temperatureT. The possibility arises for the gen
eration of two supervortices of opposite signs, whenT is
large negative~i.e., negative temperatures!. When themost
probable stateis attained for a stationary configuration th
stream functionc is shown to verify the sinh-Poisson equ
tion ~1!. These statistical considerations~applicable also for
2D MHD or guiding center particles! remain the reference
explanation for the appearance of this equation in this c
text @4–7#.

In the equations of motion~3! the right hand side contain
the curl of the Laplacian Green’s function~4! ~we takeL
51)
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2« i j ] jG~r ,r 8!5« i j ] j

1

2p
ln r 5

1

2p
« i j

r j

r 2

~5!

¹2
1

2p
ln r 5d2~r !.

The term in the right hand side of Eq.~3! can be consid-
ered as a vector potentiala(r ,t) whose ‘‘magnetic’’ field“
3a is a sum of Diracd functions at the locations of th
vortices. If we take equal strengthv for all vortices this
potential appears as the ‘‘statistical potential’’ and has a
pological interpretation@8#. From Eq.~5! it can be rewritten
as

1

2p
« i j

r j

r 2
52

1

2p
] iarctan

y

x
52

1

2p
] iu, ~6!

where r5(x,y)5(r cosu,r sinu). The ‘‘magnetic’’ flux
through a surface limited by a large circle is proportional
the number of vortices. The topological nature of this pot
tial suggests that it can be naturally derived in a topolog
framework, i.e., from a Lagrangian density of the Che
Simons type,

L5
1

4
«mabAnFab , ~7!

where Fab5]aAb2]bAa . In the analysis of the two-
dimensional Euler equation~as in the investigation of simila
systems!, the vorticity-type functionsv are expressed as th
Lapacian operator applied on a scalar function and this n
rally invokes the Green function of the Laplacian. Then t
approach suggests that the intrinsically determined motio
the fluid can be projected onto two distinct parts of a n
model: objects~vortices! and interaction between them~the
potential obtained from the Green function!. The fact that the
interaction potential can be derived from a Chern-Simo
topological action suggests that, in order to embed the or
nal Euler fluid system into a larger field-theoretical conte
we need~a! a ‘‘matter’’ part in the Lagrangian, which shoul
provide the free dynamics of the vortices;~b! the Chern-
Simons term, to describe the free dynamics of the field;~c!
the interaction term of the~Chern-Simons! field and the mat-
ter. The main requirement to this field-theoretical extens
of the original Euler fluid model is to reproduce the discre
vortices and their equation of motion.

Jackiw and Pi@9,10# have examined a model ofN inter-
acting particles~of chargeses) moving in a plane describe
by the Lagrangian

L5(
s51

N
1

2
msvs

21
1

2E d2r«abg~]aAb!Ag2E d2rAm j m,

~8!

where msvs5ps2esA(r sur1 ,r2 , . . . ,rN),
A(r sur1 ,r2 , . . . ,rN)[(as

i (r1 ,r2 , . . . ,rN) i 51,2, and
as

i (r1 ,r2 , . . . ,rN)51/2p« i j (qÞs
N eqr s

j 2r q
j /ur s2rqu2. The

matter current is defined asj m[(r, j )5(s51
N esvsd(r2r s),
04630
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vs
m5(1,vs) with the metric (1,21,21). By varying the ac-

tion we obtain the following equations:

1

2
«abgFab5«gab]aAb5 j g,

B52r, ~9!

Ei5« i j j j . ~10!

HereB5« i j ] jAi . In these equations the potential appears
being generated by the matter, i.e., by the ‘‘current’’ of pa
ticles. We note that Eq.~9! connects the matter density wit
the curl of the potential. This is important since in order
derive it in the context of the quantum version of the
model, Jackiw and Pi have shown that one needs to inclu
nonlinear self-interaction of the wave function represent
the matter field. The self-interaction of the scalar matter fi
is of the typew4. The canonical momentum expression b
comes the covariant derivative in the field-theory versio
Even at this point where we only have some hints, it is s
gestive to look for possible identifications between the flu
variables and the field-theoretical variables of the mode
Jackiw and Pi. The fluid variables are the scalar potentialc,
the velocityv i5« i j ] jc, and the vorticityv5« i j ] iv j . In or-
der to check the possibility that the fluid model can be e
bedded into the field theory just described we identify

v[r5C* C, ~11!

v i[Ai . ~12!

Consider the relation between the vector potentialA and the
densityr, obtained from Eq.~9!,

] i] iA
j52« jk]kr

or, writing symbolically the Green function of the Laplac
operator for argumentr2r 8 as the inverse of the operator
the left, we have

Aj~r ,t !5« jk]kE d2r 8~2] i] i !rr 8
21r~r 8,t !. ~13!

Since v52¹2c ~where ¹2[] i] i) we have formallyc5
2(¹2)21 v and use this formula to calculate the right si
term of Eq.~13! taking into account the identification~11!

« jk]kE d2r 8~2] i] i !rr 8
21v~r 8!5« jk]kc5v j ,

which confirms Eq.~12!. It results that if we assume ident
fication ~11!, Eq. ~9! obtained from the Lagrangian is pre
cisely thedefinitionof the vorticity vector.

One important hint from the model of Jackiw and Pi is t
idea to represent a classical quantity as the modulus o
fictitious complex scalar field, as in Eq.~11! and derive dy-
namical equations from a Lagrangian density expresse
terms of this field. The substitution of the dynamics e
pressed in terms of usual mechanical quantities by the ric
dynamics of the amplitude and phase of the complex sc
9-2
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field is an example of embedding of one theory into a lar
framework and relies on the example of quantum mechan

In Ref. @11# the sinh-Poisson equation is derived in
field-theoretical model where instead of the topological c
pling two complex scalar fields are considered. In that mo
the dynamics of the two scalar fields is independent exc
that the self-interaction depends on both. Combining t
suggestion with that one exposed in the previous paragr
we will take the densityr @which we identify with the local
value of the vorticityv as in Eq.~11!# as being expressed b
a field CPSU(2) and depending on at least two compl
scalar functions.

r;@C†,C#. ~14!

Keeping the same structure of the Lagrangian density a
the previous example but extending to a non-Abelian SU~2!
gauge field we have@12,10#

L52«mnrTrS ]mAnAr1
2

3
AmAnArD1 iTr~C†D0C!

2
1

2
Tr@~DiC!†DiC#1

1

4
Tr~@C†,C#!2, ~15!

where the potentialA takes values in the algebra of the gro
SU~2!. This form incorporates and adapts all the suggesti
from the previous models:~a! the first term is the genera
non-Abelian expression of the Chern-Simons term;~b! it
uses the covariant derivatives (m50,1,2, i 51,2) for the
minimal coupling

DmC5]mC1@Am ,C#.

~c! Finally, it includes a scalar self-interaction ofw4 type.
Analogous to the case treated by Jackiw and Pi for the U~1!
gauge field~8!, in Ref. @12# it is shown that the Hamiltonian
density corresponding to the Lagrangian density~15! is

H5 1
2 Tr@~DiC!†~DiC!#2 1

4 Tr~@C†,C#2!, ~16!

since the Chern-Simons term does not contribute to the
ergy density~being first order in the time derivatives!. The
equations of motion are

iD 0C52
1

2
D2C2

1

2
~@C,C†#,C!, ~17!

Fmn52
i

2
«mnrJr. ~18!

Using the notationD6[D16 iD 2 the first term in Eq.~16!
can be written as

Tr@~DiC!†~DiC!#5Tr@~D2C!†~D2C!#

1
1

2
Tr~C†

†@C,C†#,C‡!.

The last term comes from Eq.~18! and from the definition
J05@C,C†#. Then the energy density is
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H5 1
2 Tr@~D2C!†~D2C!#>0 ~19!

and the Bogomol’nyi inequality is saturated at self-duality

D2C50, ~20!

]1A22]2A11@A1 ,A2#5@C,C†#. ~21!

The first equation results from the minimum in Eq.~19! and
the second is actually, Eq.~18!, with the definitions

J05@C†,C#,

Ji52
i

2
$@C†,DiC#2@~DiC!†,C#%.

The static solutions of theself-duality equations~20! and
~21! are derived in Ref.@12#, using the algebraic ansatz:

Ai5 (
a51

r

Ai
aHa , C5 (

a51

r

caEa1cME2M ,

whereHa are the Cartan subalgebra generators for the ga
Lie algebra,Ea are the simple-root step operators andE2M
is the step operator corresponding to the minus maximal
@13,14#. The rank of the algebra is notedr, andr 51 for SU
~2!. Then

@C†,C#5 (
a51

r

ucau2Ha1ucMu2H2M . ~22!

Equations~20! and ~21! lead to the affine Toda equations

¹2ln ra1 (
b51

r 11

C̃abrb50 ~23!

for a51,r , plus the index forM, i.e., a51,2. C̃ab is the
extended Cartan matrix

C̃ab5
2a (a)

•a (b)

ua (b)u2
, a,b51,2,

wherea (a) are the simple root vectors of the algebra su~2!,
and in addition the minus maximal root. Equations~23! can
be written in detail forr1[uc1u2, r2[uc2Mu2,

D ln r112~r12r2!50,
~24!

D ln r212~2r11r2!50,

and this gives the relation

D ln~r1r2!50,

or

r25const r1
21 , ~25!

since the exponential of a linear term is excluded by
conditions on a circle at infinity. Using Eq.~22! we have to
identify
9-3
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v5r12r2 , ~26!

whose equation is obtained from Eqs.~24! and ~25! with
const equal to 1~see below!,

D ln r112~r12r1
21!50. ~27!

The substitution c8[ ln r1 transforms Eq. ~27! in
2D(c8/2)52 sinh(c8) and Eq.~26! in v52 sinh(c8). This
shows thatc8/2[c ~the stream function! and we haveDc
12 sinh(2c)50. Actually we can multiplyc with an arbitary
constantg and/or put in front of sinh any other arbitrar
constantb, since these can be absorbed in scalings of
space variables (x,y). We then have

Dc1g sinh~bc!50. ~28!

Choosing a constant different of unity in Eq.~25! imposes
a linear substitution of the stream function:c→c8[g
1bc and modifies the factor multiplying the sinh functio
in Eq. ~28!. The scaling we have mentioned allows us
adopt the simplest form of the sinh-Poisson equation,Dc
1sinhc50. The exact solution of the equation is 2v
5@u(u11/2,t)/u(u,t)#22@u(u11/2,t)/u(u,t)#22. Here
u are Reimanntheta functions, u5kxx1kyy. The param-
eters (kx ,ky) and t are determined in terms of the ma
spectrum of the Lax eigenproblem and the periods of a b
of differential one forms on the elements of the basis of
first cohomology group of a Riemann surface@15#. At self-
z,

04630
e

is
e

duality @i.e., states described by Eq.~28!# the 2D fluid invari-
ants *vndxdy are all connected: thenth order can be de-
rived by recurrence from lower orders, since sinhnc can be
expressed through sinh(mc), m<n, followed by a scaling as
mentioned above.

We have constructed the Lagrangian density~15! with a
standard structure of matter-gauge field interaction, and
corporating suggestions from models relevant to our p
pose. The aim was to reproduce the model of fluid vor
filaments supposed to be a faithful representation of
original Euler fluid dynamics. The fundamental step in t
derivation of the sinh-Poisson equation is the assump
that energy density~19! is minimum ~which is equivalent to
minimizing theaction for these stationary solution!, i.e., in
the condition of self-duality. The self-duality can only b
revealed in this framework and this sheds a new light on
asymptotic states consisting of regular vortices. Convers
we can expect that the reductions from self-dual Yang-M
~via twistors! to the exactly integrable hierarchies and Pa
leve transcendents have a correspondence in the state
maximum probability of a finite statistical model with var
ous conservation constraints.
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