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Self-duality of the asymptotic relaxation states of fluids and plasmas
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The states of asymptotic relaxation of two-dimensional fluids and plasmas present a high degree of regularity
and obedience to the sinh-Poisson equation. We find that by embedding the classical fluid description into a
field-theoretical framework, the same equation appears as a manifestation of the self-duality.
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The states generated by externally drivi(girring) an In the study of the two-dimensional Euler fluids, and in
ideal fluid can have a very irregular form. It is, however, particular in explaining the origin of Eql), an important
known from experiments and numerical simulations that afmodel consists of a system bf discrete vorticity filaments
ter suppressing the drive the system evolves to states with@erpendicular on plane, having circular transversal section of
high degree of order, essentially consisting of few large vorradiusa and carrying the vorticityw; , i=1,N. A very com-
tices, with very regular geometry. These states are attaingorehensive account of this system is given by Kraichnan and
after long time evolution and are not due to the residuaMontgomery{3] where the correspondence between the con-
dissipation. The process consists of vortex merging, which isinuous and discrete representations of vorticity is discussed
an essentially topological event where the weak dissipatioin detail. The motion in plane of thieth filament of coordi-
only allows the reconnection of the field lines but does notatesr,=(ri,r2)=(x,,yx) is given by
produce significant energy loss from the fluid motion. Infer-

ring from results of numerical simulations, Montgomery N

i
etal. [1,2] have proved that the scalar stream functipn %:sij i w,G(re—ry), i,j=1,2, k=1N,
describing the motion in two-dimensional space obeys in the dt ari n=Tn+#k
far asymptotic regiméwhere the regular structures are domi- (€]

nand the sinh-Poisson equation
where the summation is over all the other filaments’ posi-
A+ ysinh(By)=0, (1)  tionsr,, n#k, and&'l is the antisymmetric tensor in two
dimensions. As shown in R€i3] G(r,—r,) can be approxi-
wherey and B are positiveconstants. The relations @fto  mated fora small compared to the space extension of the
the velocity and vorticity arev=Vyxe,, w=VXv= fluid, L, a<L, as the Green function of the Laplacian

—V2ye,, wheree, is the unitary vector perpendicular to the

plane. With these variables, the Euler equations for the two- Glrr )= L, Ir—r’| 4
dimensional ideal incompressible fluids are (rri)~=o-In|—/—/. )
V.v=0 ‘9_“’+(V,V)w: 0. 2 Using the Liouville theorem and the conservation of en-
Tt ergy and momentum the statistical properties of the system

of discrete vortices have been examined. The model consists

The fact that the sinh-Poisson equation appears in thisf an equal number of positive and negative vortices with
context is rather unexpected. It is difficult to understand howequal absolute magnitudés;| =|w|, in contact with a ther-
this equation(exactly integrable and with a very wide in- mal bath of temperatur€ The possibility arises for the gen-
volvement in topological soliton and instanton physican  eration of two supervortices of opposite signs, whers
also describe fluid states. Our objective is to prove that therarge negative(i.e., negative temperatupedVhen themost
is a natural way to enlarge the classical Euler fluid descripprobable statds attained for a stationary configuration the
tion to a field-theoretical framework where the topological stream function) is shown to verify the sinh-Poisson equa-
properties become more transparent. The most important réion (1). These statistical consideratiofepplicable also for
sult is that the asymptotic relaxation states and theD MHD or guiding center particlesremain the reference
sinh-Poisson equation naturally emerge as a consequence @fplanation for the appearance of this equation in this con-
self-duality The extension of the Euler fluid description will text[4—7].
be done progressively, examining models elaborated for In the equations of motiof8) the right hand side contains
closely related problems and collecting the relevant suggegshe curl of the Laplacian Green’s functiotd) (we takelL
tions that could allow us to write a Lagrangian density. =1)
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- 1 ol vE=(1yvs) with the metric (1;-1,—1). By varying the ac-
—e"9;G(r,r")=¢"9, %In r= ESU = tion we obtain the following equations:
5 1
1 —e*PF L =e7F9 Ag=]",
VZo—Inr=8(r). 2 g o~

The term in the right hand side of E(B) can be consid- B="r. ©
ered as a vector potentia(r,t) whose “magnetic” fieldV El=¢lljl, (10)
Xa is a sum of Diracé functions at the locations of the
vortices. If we take equal strength for all vortices this HereB:s”ain. In these equations the potential appears as
potential appears as the “statistical potential” and has a tobeing generated by the matter, i.e., by the “current” of par-
pological interpretatiof8]. From Eq.(5) it can be rewritten ticles. We note that Eq9) connects the matter density with

as the curl of the potential. This is important since in order to
. derive it in the context of the quantum version of their

1 i r 1 y 1 model, Jackiw and Pi have shown that one needs to include a
2% 27 ppoarctan =-5d0, ®  nonlinear self-interaction of the wave function representing

the matter field. The self-interaction of the scalar matter field
where r=(x,y)=(r cosérsiné). The “magnetic’ flux IS of the typee®. The canonical momentum expression be-
through a surface limited by a large circle is proportional to€omes the covariant derivative in the field-theory version.
the number of vortices. The topological nature of this potenEven at this point where we only have some hints, it is sug-

tial suggests that it can be naturally derived in a topologica@estive to look for possible identifications between the fluid

Simons type, Jackiw and Pi. The fluid variables are the scalar potegijal
the velocityv'=¢" d;4, and the vorticityw=¢&" djv;. In or-

1 ap der to check the possibility that the fluid model can be em-
L= ZSM AFap, (7) bedded into the field theory just described we identify
where F,z=03,Ag—dzA,. In the analysis of the two- w=p="*V, (12)
dimensional Euler equatiofas in the investigation of similar i— Al 12
systems, the vorticity-type functions» are expressed as the v=as (12
Lapacian operator applied on a scalar function and this naty-qnsider the relation between the vector poteriand the
rally invokes the Green fungtlon qf the Laplaman. Then' th'sdensityp, obtained from Eq(9),
approach suggests that the intrinsically determined motion of
the fluid can be projected onto two distinct parts of a new d AN =—ekgp
model: objectqvorticeg and interaction between the(the
potential obtained from the Green functjofihe fact that the or, writing symbolically the Green function of the Laplace
interaction potential can be derived from a Chern-Simongperator for argument—r’ as the inverse of the operator at
topological action suggests that, in order to embed the origithe left, we have
nal Euler fluid system into a larger field-theoretical context,
we n_eec{a) a “matter” part in the Lagrangian, which should Aj(r,t)zsjkakf d2r' (= da)tp(r' b). (13)
provide the free dynamics of the vorticedy) the Chern- "

Simons term, to describe the free dynamics of the fiédyl; . o
the interaction term of théChern-Simongfield and the mat- 5'”02‘3? —V*y (wheraV2=a'ai) we have formally(p: .
ter. The main requirement to this field-theoretical extension_(V ) ~wand use th_|s formula to CaI(_:uIata _the_ right side
of the original Euler fluid model is to reproduce the discrete®®™ of Eq.(13) taking into account the identificatiod1)
vortices and their equation of motion.

Jackiw and P{9,10] have examined a model &f inter- s“‘akJ d?r'(—d'ap)re(r ) =eka =0l
acting particlegof chargese;) moving in a plane described
by the Lagrangian which confirms Eq(12). It results that if we assume identi-
N fication (11), Eq. (9) obtained from the Lagrangian is pre-
L:z Em V2 Ef d2re®B7(3, Az A _f drA j* cisely thedefinitionof the vorticity vector.
=2 %% 2 @By we One important hint from the model of Jackiw and Pi is the

(8) idea to represent a classical quantity as the modulus of a
fictitious complex scalar field, as in E¢L1) and derive dy-

where imsVsz Ps—EA(rgr1,r2, - . M), namical equations from a Lagrangian density expressed in
A(rgrora, ... ,fN)E(as(fl,Lzy e IN)i=12s and  terms of this field. The substitution of the dynamics ex-
ay(ri,ro, ... Fy) =12 S0, eqrl—rl/[rs—rgl>.  The  pressed in terms of usual mechanical quantities by the richer

matter current is defined aj;*fz(p,j)zEg:lesvsé(r—rs), dynamics of the amplitude and phase of the complex scalar
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field is an example of embedding of one theory into a larger
framework and relies on the example of quantum mechanics. N o .

In Ref. [11] the sinh-Poisson equation is derived in aand the Bogomol'nyi inequality is saturated at self-duality
field-theoretical model where instead of the topological cou-
pling two complex scalar fields are considered. In that model
the dynamics of the two scalar fields is independent except _ +
that the self-interaction depends on both. Combining this I+A-—d-AL+[ALA]=[T, P, (2D

suggestion with that one exposed in the previous paragraphe first equation results from the minimum in Eg9) and

we will take the density [which we identify with the local o second is actually, EL8), with the definitions
value of the vorticityw as in Eq.(11)] as being expressed by ' '

a field ¥ e SU(2) and depending on at least two complex
scalar functions.

H=3T(D_¥)"(D_¥)]=0 (19

D_¥=0, (20

O=[vT ¥],

p~[W 1. (14 3=~ S {[¥!.DW]-[(DW), ¥]).

Keeping the same structure of the Lagrangian density as i
the previous example but extending to a non-AbeliariZU
gauge field we havgl2,1Q

he static solutions of theself-duality equations(20) and
(21) are derived in Ref[12], using the algebraic ansatz:

r r
2 . — a _ a M
L=—em"Tr| 3,A A+ SAAA, | HITIEDoW) A= 2 AT, W=2 Bt yME
whereH , are the Cartan subalgebra generators for the gauge
Lie algebra,E, are the simple-root step operators dndy,

is the step operator corresponding to the minus maximal root

where the potentiah takes values in the algebra of the group [13,14]. The rank of the algebra is notedandr =1 for SU
SU(2). This form incorporates and adapts all the suggestioné?)- Then

from the previous modelsia) the first term is the general r

non-Abelian expression of the Chern-Simons tef); it Pt pl= 224+ [yMI2H 29
uses the covariant derivativest€0,1,2, i=1,2) for the ] gl [P Hat [ H 22
minimal coupling

1 1
—ETr[(Di\P)TDi‘lf]vLZTr([\IfT,\P])Z, (15)

Equations(20) and(21) lead to the affine Toda equations
D, ¥v=4,V+[A, V]

r+1

(c) Finally, it includes a scalar self-interaction @f type. Vanpa+ bzl Canpr=0 (23
Analogous to the case treated by Jackiw and Pi for tft® U -

gauge field8), in Ref.[12] it is shown that the Hamiltonian

density corresponding to the Lagrangian denélfy) is

H=3Ti(D;W) (D;¥)] -3 Tr([PT,¥]?), (16

since the Chern-Simons term does not contribute to the en- Cap=

ergy density(being first order in the time derivativesThe
equations of motion are

_ 1 1

iDoW =~ 5D*W - ([¥,¥1],¥), (17)
i P

Fu=- 58‘“’”‘] . (18

Using the notatiorD_.=D;*iD, the first term in Eq(16)
can be written as

Tr[(Dy¥)"(D;¥)]=Tr{(D_¥)"(D_¥)]

1
+§Tr(‘lfT[[\If,\IfT],\I']).

The last term comes from E@18) and from the definition

J°=[W¥ ,¥T]. Then the energy density is

for a=1r, plus the index forM, i.e., a=1,2. C,y, is the
extended Cartan matrix

24@ . o

W, a,b=1,2,

wherea® are the simple root vectors of the algebra(8y
and in addition the minus maximal root. Equatid@8) can
be written in detail forp,=|¢?|?, po,=|y M|,

Alnpy+2(py—p2)=0,

(24)
Alnpy+2(=p1+py)=0,
and this gives the relation
Aln(p1p2)=0,
or
pp=const p; 1, (25)

since the exponential of a linear term is excluded by the
conditions on a circle at infinity. Using E¢22) we have to
identify
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wW=pP17 P2, (26)

whose equation is obtained from Eq24) and (25) with
const equal to 1see belowy,

Alnpy+2(py—p; 1) =0. (27)

The substitution '=Inp; transforms Eqg. (27) in
—A(¢'/2)=2 sinh@') and Eq.(26) in =2 sinh@’). This
shows thaty' /2= (the stream functionand we haveA
+2 sinh(2)=0. Actually we can multiplyy with an arbitary
constanty and/or put in front of sinh any other arbitrary

PHYSICAL REVIEW E 67, 046309 (2003

duality[i.e., states described by E@8)] the 2D fluid invari-

ants [ w"dxdy are all connected: thath order can be de-
rived by recurrence from lower orders, since Sialtan be

expressed through sinh(), m=n, followed by a scaling as
mentioned above.

We have constructed the Lagrangian denslty) with a
standard structure of matter-gauge field interaction, and in-
corporating suggestions from models relevant to our pur-
pose. The aim was to reproduce the model of fluid vortex
filaments supposed to be a faithful representation of the
original Euler fluid dynamics. The fundamental step in the

constantB, since these can be absorbed in scalings of theerivation of the sinh-Poisson equation is the assumption

space variablesx(y). We then have

A+ ysinh( By)=0. (29

Choosing a constant different of unity in E@5) imposes
a linear substitution of the stream functiogi— ¢'=vy

that energy density19) is minimum (which is equivalent to
minimizing the action for these stationary solutipni.e., in

the condition of self-duality. The self-duality can only be
revealed in this framework and this sheds a new light on the
asymptotic states consisting of regular vortices. Conversely,
we can expect that the reductions from self-dual Yang-Mills

+ By and modifies the factor multiplying the sinh function (y;5 wwistorg to the exactly integrable hierarchies and Pain-
in Eq. (28). The scaling we have mentioned allows us 10|ge ranscendents have a correspondence in the states of

adopt the simplest form of the sinh-Poisson equatid,
+sinhy=0. The exact solution of the equation isw?2
=[6(u+1/2,7)/6(u,7)]>*—[6(u+1/2,7)/6(u,7)] 2. Here
¢ are Reimanrtheta functions, u=k,x+k,y. The param-

maximum probability of a finite statistical model with vari-
ous conservation constraints.
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